Learning Resources

Chapter 3 – Linear transformations and matrices

= f\left( \begin{bmatrix}x \\ y\end{bmatrix} \right)$, where $\begin{bmatrix}\hat{i}_x \\ \hat{i}_y\end{bmatrix}$ is where the basis vector $\hat{i}$ lands after the transformation, and $\begin{bmatrix}\hat{j}_x \\ \hat{j}_y\end{bmatrix}$ is where the basis vector $\hat{j}$ lands.

Chapter 6 – The determinant

=

\text{Area of parallelogram spanned by } \vec{v} \text{ and } \vec{u}$

image.png

Chapter 7 – Inverse matrices, column space and null space

Chapter 9 – Dot Products and duality

\cdot

\begin{bmatrix} c \\ d \end{bmatrix}

=

\begin{bmatrix} a & b \end{bmatrix}

\begin{bmatrix} c \\ d \end{bmatrix}

= \text{A scalar value}$

image.png

image.png

Chapter 10 – Cross products in the light of linear transformations

  1. We derive the Cross Product formula using the determinant. But why is the determinant present in this formula?
  2. $\det(A)$ = Volume of parallelepiped spanned by the column vectors of $A$, when $A$ has 3 columns (3D).
  3. Volume = Area $\times$ Height.
  4. The diagram to the right is a variant of the Cross Product formula using determinants.

image.png

image.png